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1. Introduction

The Gelfand-Naimark theorem is the one of the most important results
in the theory of Banach algebras. The development of the general theory of
Banach-Kantorovich C*-algebras over the ring of measurable functions natu-
rally leads to the question about an analog of the Gelfand-Naimark theorem for
such C*-modules. The theory of C*-modules comes from the work I.Kaplansky
(Kaplasky, 1953). In Kusraev (1996) it was proved a vector a vector valued



i
i

i
i

i
i

i
i

Bekbaev, D.U. and Ganiev, I.G.

version of Gelfand-Mazur’s theorem for C*-modules over Stone algebra The
theory of Banach-Kantorovich modules is being actively developed now (Kus-
raev, 2003),(Gutman, 1995). In (Ganiev and Chilin, 2003) a C*-algebra over a
ring of measurable functions as a measurable bundle of a classic C*-algebras is
presented. In Chilin et al. (2008) the Gelfand-Naimark theorem for C*-algebras
over a ring of measurable functions is proved.

In this paper we are going to prove the Gelfand-Naimark theorem for C∗-
algebras over Arens algebras.

2. Preliminaries

Let (Ω,Σ, µ) be a measurable space with a complete finite measure and
let L0 = L0(Ω) be the algebra of all complex measurable functions defined on
(Ω,Σ, µ), E be a complex linear space.

The mapping ‖ · ‖ : E → L0 is called an L0-valued norm on E, if for any
x, y ∈ E, λ ∈ C satisfies the following

‖x‖ ≥ 0, ‖x‖ = 0⇔ x = 0, ‖λx‖ = |λ|‖x‖, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A pair (E, ‖ · ‖) is called a lattice-normed space (LNS) over L0. An LNS
E is said to be d-decomposable, if for any x ∈ E and for any decomposition
‖x‖ = e1 + e2 into a sum of disjunctive elements one can find x1, x2 ∈ E such
that x = x1 + x2 and ‖x1‖ = e1, ‖x2‖ = e2. A net (xα)α∈A of elements of E
is said to be (bo)-converging to x ∈ E, if the net ‖xα − x‖α∈A (o)-converges to
zero in L0. A (bo)-complete d-decomposable LNS over L0 is called a Banach-
Kantorovich space (BKS) over L0 ((Kusraev, 1985), P. 32; (Kusraev, 2003), P.
79).

Let U be an arbitrary *-algebra over the field C of complex numbers and let
U be the module over L0; assume that (λu)∗ = λu∗, (λu)v = λ(uv) = u(λv) for
all λ ∈ L0, u, v ∈ U . Consider on U a certain L0-valued norm ‖·‖, endowing U
with the structure of a Banach-Kantorovich space, in particular, ‖λu‖ = |λ|‖u‖
for all λ ∈ L0, u ∈ U .

Definition 2.1. (Kusraev, 1985) U is called a C∗-algebra over L0, if all u, v ∈
U satisfies ‖u · v‖ ≤ ‖u‖‖v‖, ‖u‖2 = ‖u∗ ·u‖. If U is a C∗-algebra over L0 with
the unit e and ‖e‖ = 1, where 1 is the unit in L0, then U is called a unital
C∗-algebra over L0.

Let X be a mapping, which sends every point ω ∈ Ω to some C∗-algebra
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(X(ω), ‖ · ‖X(ω)). We assume that X(ω) 6= {0} for all ω ∈ Ω. A function u
is said to be a section of X, if it is defined almost everywhere in Ω and takes
values u(ω) ∈ X(ω) for ω ∈ dom(u), where dom(u) is the domain of u.

Let L be some set of sections.

Definition 2.2. (Kusraev, 1985) A pair (X , L) is called a measurable bundle
of C∗-algebras, if

1. λ1c1 + λ2c2 ∈ L for all λ1, λ2 ∈ C and c1, c2 ∈ L, where λ1c1 + λ2c2 :
ω ∈ dom(c1)

⋂
dom(c2)→ λ1c1(ω) + λ2c2(ω);

2. the function ‖c‖ : ω ∈ dom(c)→ ‖c(ω)‖U(ω) is measurable for all c ∈ L;

3. for each point ω ∈ Ω the set {c(ω) : c ∈ L, ω ∈ dom(c)} is dense in
U(ω);

4. if u ∈ L, then u∗ ∈ L, where u∗ : ω ∈ dom(u)→ u(ω)∗;

5. if u, v ∈ L, then u · v ∈ L, where u · v : ω ∈ dom(u)
⋂
dom(v) →

u(ω) · v(ω).

A section s is called stepwise, if s(ω) =
∑n
i=1 χAi

(ω)ci(ω), where ci ∈
L,Ai ∈ Σ, i = 1, n. A section u is called measurable, if one can find a sequence
(sn)n∈N of stepwise sections such that ‖sn(ω) − u(ω)‖U(ω) → 0 for almost all
ω ∈ Ω.

The set of all measurable sections is denoted by M(Ω, X), and L0(Ω, X)
denotes the factorization of this set with respect to equality almost everywhere
on Ω. We denote by û the class from L0(Ω, X) containing a section u ∈
M(Ω, X), and by ‖û‖ the element of L0 containing the function ‖u(ω)‖X(ω).

Put û · v̂ = ˆu(ω) · v(ω) and û∗ = ˆu(ω)∗.It is shown in Kusraev (1985) that
with respect to the introduced algebraic operations (L0(Ω, X), ‖ · ‖) is a C∗-
algebra over L0.

Let L∞(Ω) be an algebra of bounded measurable functions on (Ω,Σ, µ); let
L∞(Ω) be a factorization of L∞(Ω) with respect to the equality a. e. Put
L∞(Ω, X) = {u ∈ M(Ω, X) : ‖u(ω)‖U(ω) ∈ L∞(Ω)}. Elements of L∞(Ω, X)
are said to be essentially bounded measurable sections. By L∞(Ω, X) we denote
the set of equivalence classes of essentially bounded sections.

Consider an arbitrary lifting p : L∞(Ω)→ L∞(Ω) ((Kusraev, 1985), P. 50;
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(Chilin et al., 2008)).

Definition 2.3. (Kusraev, 1985) A mapping lχ : L∞(Ω, X) → L∞(Ω, X)
is called a vector-valued lifting (associated with the lifting p), if all û, v̂ ∈
L∞(Ω, X) and λ ∈ L∞(Ω) satisfy the following correlations:

1. lχ(û) ∈ û, domlχ(û) = Ω;

2. ‖lχ(û)(ω)‖U(ω) = p(‖û‖)(ω);

3. lχ(û+ v̂) = lχ(û) + lχ(v̂);

4. lχ(λû) = p(α)lχ(û);

5. lχ(û∗) = lχ(û)∗;

6. lχ(ûv̂) = lχ(û)lχ(v̂);

7. the set {lχ(û)(ω) : û ∈ L∞(Ω, X)} is dense in U(ω) for all ω ∈ Ω.

It is well-known ((Kusraev, 1985), theorem 2) that for any C∗-algebra U
over L0 a measurable bundle of C∗-algebras (X,L) exists such that U is iso-
metrically *-isomorphic to L0(Ω, X), and on L∞(Ω, X) a lifting exists which is
associated with a certain numerical lifting p.

A functional f : U → L0 is called L0-linear, if f(αx+ βy) = αf(x) + βf(y)
for all α, β ∈ L0, x, y ∈ U . An L0-linear functional f : U → L0 is called
L0-bounded, if one can find c ∈ L0 such that ‖f(x)‖ ≤ c‖x‖ for all x ∈ U . For
an L0-linear L0-bounded functional f : U → L0 we put ‖f‖ = sup{|f(x)| : x ∈
U, ‖x‖ ≤ 1}. An L0-linear functional f : U → L0 is called positive (f 6= 0), if
f(xx∗) 6= 0 for all x ∈ U .

The mentioned functional is called a state, if f 6= 0 and ‖f‖ = 1.

A state ϕ is called pure, if the relation ϕ 6= ψ 6= 0, where ψ is an L0-linear
functional, implies that ψ = λϕ for certain λ ∈ L0, 0 ≤ λ ≤ 1.

For p ∈ [1;∞] we denote

Lp(Ω, X) = {û ∈ L0(Ω, X) : ‖u(ω)‖X(ω) ∈ Lp}.

From Bekbaev and Ganiev (2014) we know that Lp(Ω, X) is Banach space with
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respect to the norm:

‖û‖Lp(Ω,X) =



∫

Ω

‖u(ω)‖pX(ω)dµ




1/p

= ‖‖u(ω)‖X(ω)‖Lp(Ω,X)

Let
Lω(Ω, X) =

⋂

p≥1

Lp(Ω, X)

i.e.

Lω(Ω, X) = {û ∈ L0(Ω, X) : ‖û‖1 <∞, ‖û‖2 <∞, ..., ‖û‖p <∞, ...}.

We will consider in Lω(Ω, X) locally convex topology τX is generated by system
of norms {‖ · ‖Lp(Ω,X)}p≥1. We know from Bekbaev and Ganiev (2014) that

‖û‖L1(Ω,X) ≤ ‖û‖L2(Ω,X) ≤ · · · ≤ ‖û‖Lp(Ω,X) ≤ · · · ,

i.e. the topology τX generated by countable system of norms {‖ ·‖Ln(Ω,X)}∞n=1.
By Theorem III.2.2 (Kantorovich and Akilov, 1982) it means that topological
vector space (Lω(Ω, X), τX) is metrizable space with respect to the metric

d(û, v̂) =
∞∑

k=1

1

2k
‖û− v̂‖Lk(Ω,X)

1 + ‖û− v̂‖Lk(Ω,X)

.

3. The State Space of C*-Algebras Over Arens
Algebras

Let a unital C∗-algebra U over Lω. We assume that U has the form
Lω(Ω, X), where X is a measurable bundle of C∗-algebras with a vector-valued
lifting.

If ϕ 6= 0, a, b ∈ U, λ ∈ Lω, then ϕ((λa+ b)∗(λa+ b)) 6= 0, i.e., |λ|2ϕ(a∗a) +
λϕ(a∗b) + λϕ(b∗a) + ϕ(b∗b) 6= 0. Therefore

ϕ(a∗b) = ϕ(b∗a), |ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b). (1)

Consequently, for ϕ 6= 0, a ∈ U we have ϕ(a∗) = ϕ(a); in addition, ϕ = 0,
if ϕ(e) = 0.
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The following two propositions are versions of the well-known properties of
positive functionals of C∗-algebras for the case of C∗-algebras over Lω.

Proposition 3.1. Let U∗ be the set of all Lω-linear Lω-bounded functionals
on U . Then

(a) if ϕ 6= 0, then |ϕ(x)|2 ≤ ϕ(e)ϕ(x∗x) ≤ ϕ(e)2‖x‖2, in particular, ϕ ∈ U∗
and ‖ϕ‖ = ϕ(e);

(b) if ϕ ∈ U∗ and ‖ϕ‖ = ϕ(e), then ϕ 6= 0;

(c) if ϕ ∈ U∗ and ‖ϕ‖ = 1 = ϕ(e), then ϕ is a state;

(d) if ϕ,ψ 6= 0 and α, β ∈ Lω, α, β 6= 0 then αϕ+βψ 6= 0 and ‖αϕ+βψ‖ =
α‖ϕ‖+ β‖ψ‖, the set EU of all states on U is a convex set.

Proof. (a) Since (L∞(Ω, X), ‖ · ‖) is a BKS over L∞(Ω), we conclude that
(L∞(Ω, X), ‖·‖∞) is a Banach space with respect to the norm ‖x‖∞ = ‖‖x‖‖L∞(Ω), x ∈
L∞(Ω,X ). It is known that (L∞(Ω, X), ‖ · ‖∞) is a C∗-algebra over C.((?)).

Let x ∈ U . For any n ∈ N put Ωn = {ω ∈ Ω : ‖x‖(ω) < 1
n}. We define

function αn by following formula:

αn(ω) =

{
0, ω ∈ Ωn;

1
‖x‖(ω) , ω ∈ Ωn.

It is easy to check that αn ∈ Lω for all n.

Put zn = αnx, n ∈ N. Then ‖z∗nzn‖ = ‖αnx‖2 = |αn|2‖x‖2 = πn ≤ 1,
where πn = χΩ\Ωn

.

Hence ‖z∗nzn‖∞ ≤ 1, so e− z∗nzn is a positive element in L∞(Ω, X), i.e. one
can find u ∈ L∞(Ω, X) such that e−z∗nzn = u∗nun. From here ϕ(e)−ϕ(z∗nzn) =
ϕ(u∗nun) ≥ 0 and ϕ(z∗nzn) ≤ ϕ(e).

Set xn = ‖x‖zn and therefore

ϕ(x∗nxn) = ‖x‖2ϕ(z∗nzn) ≤ ϕ(e)‖x‖2

so
ϕ(x∗nxn) ≤ ϕ(e)‖x‖2.
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Now using inequality (1) we get

|ϕ(xn)|2 = |ϕ(exn)|2 ≤ |ϕ(e∗e)ϕ(x∗nxn) ≤ ϕ(e)2‖x‖2

which means

|ϕ(xn)| ≤ ϕ(e)‖x‖ (2)

As xn = ‖x‖zn = ‖x‖αnx we get

xn = ‖x‖αnx = πnx. (3)

Combining (2) and (3) we get |ϕ(πnx)| ≤ ϕ(e)‖x‖ and πn|ϕ(x)| ≤ ϕ(e)‖x‖

Since πn ↑ 1 we get

|ϕ(x)| ≤ ϕ(e)‖x‖. (4)

From inequality (4) we get ϕ ∈ U∗ and ‖ϕ‖ ≤ ϕ(e). Since ‖e‖ = 1 we get
‖ϕ‖ = ϕ(e).

(b) Let ϕ ∈ U∗ and ‖ϕ‖ = ϕ(e). With no loss of generality, assume that
‖ϕ‖ = ϕ(e) ∈ L∞(Ω) (otherwise we consider ϕ

1+‖ϕ‖ ).For each ω ∈ Ω we define
a C-linear functional ϕω on L∞(Ω, X) by the following rule:

ϕω(x) = p(ϕ(x))(ω), x ∈ L∞(Ω,X ), (5)

where p is a numerical lifting on L∞(Ω). Let ‖x‖∞ ≤ 1. Then ‖x‖ ≤ 1 and

|ϕω(x)| = p(|ϕ(x)|)(ω) ≤ p(ϕ(e))(ω) = ϕω(e).

Consequently, ϕω is a bounded functional on L∞(Ω, X), and ‖ϕω‖ ≤ ϕω(e).
As ‖e‖∞ = 1, we get ‖ϕω‖ = ϕω(e) for all ω ∈ Ω. This means that ϕω ≥ 0 for
all ω ∈ Ω, and therefore ϕ ≥ 0.

Items (c) and (d) immediately follow from (b).

Malaysian Journal of Mathematical Sciences 211



i
i

i
i

i
i

i
i

Bekbaev, D.U. and Ganiev, I.G.

Proposition 3.2. Let U be a C∗-algebra over Lω, and EU be the set of all
states on U,ϕ ∈ EU . Consider the following conditions:

(a) ϕ is an extreme point of EU ;

(b) ϕ is a pure state;

(c) ϕ is a homomorphism, i. e., ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ U .

Then (a)⇔ (b), and if U is commutative, then conditions (a), (b), (c) are
equivalent.

Proof. (a) ⇒ (b) Let ϕ ∈ EU be an extreme point. Assume that ϕ is not
pure. Then one can find ψ ≥ 0 such that ϕ ≥ ψ and ψ 6= λϕ for all
λ ∈ Lω, 0 ≤ λ ≤ 1. Since 1 = ϕ(e) ≥ ψ(e) ≥ 0, we have ψ 6= ψ(e)ϕ. As-
sume that ψ(e) = χA for certain A ∈ Σ. Then χAψ = χ, χA(ϕ − ψ) ≥ 0, and
0 ≤ χA(ϕ(e)−ψ(e)) = χA−χA = 0. Hence χAψ = χAϕ and ψ = χAϕ = ψ(e)ϕ,
what contradicts the inequality ψ 6= ψ(e)ϕ. Therefore there exists 0 < t < 1
such that the set B = {ω ∈ Ω : t < ψ(e)(ω) < 1} has a positive measure, i.e.,
π = χB 6= 0. Let us define α ∈ Lω, putting

α(ω) =

{
0, w ∈ B

1
ψ(e)(w) , w ∈ B

Then tα ≤ π, ϕ1 = αψ + π⊥ϕ is a state, where π⊥ = 1 − π, and tϕ1 =
tαψ + tπ⊥ϕ ≤ πψ + π⊥ϕ ≤ ϕ.

Put ϕ2 = ϕ−tϕ1

1−t . Clearly, ϕ ≥ ϕ2 ≥ 0 and ‖ϕ2‖ = ‖ϕ‖−t‖ϕ1‖
1−t = 1, i.e., ϕ2 is

also a state, in addition, ϕ1 = tϕ1 + (1− t)ϕ2, what contradicts condition (a).

(b) ⇒ (a) Let ϕ be a pure state and ϕ = tϕ1 + (1 − t)ϕ2, where 0 <
t < 1, ϕ1, ϕ2 ∈ EU . Then ϕ ≥ tϕ1, and therefore tϕ1 = λϕ with certain
λ ∈ Lω, 0 ≤ λ ≤ 1, in particular, t1 = tϕ1(e) = λϕ(e) = λ. Consequently,
ϕ = ϕ1, and therefore ϕ is a limiting point.

Now let U be a commutative C∗-algebra over Lω.

(b)⇒ (c). Let ϕ ∈ EU be a pure state. Let us first prove the following

ϕ(xx∗y) = ϕ(xx∗)ϕ(y), x, y ∈ U (6)
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Let x, u ∈ L∞(Ω,X ), ‖xx∗‖∞ < 1, e− xx∗ = uu∗. We will put

ψ(y) = ϕ(xx∗y), y ∈ U.

Using positivity ϕ, we get ψ(yy∗) = ϕ(xx∗yy∗) = ϕ((xy)(xy)∗) ≥ 0 and
ϕ(yy∗) − ψ(yy∗) = ϕ(yy∗) − ϕ(xx∗yy∗) = ϕ((e − xx∗)yy∗) = ϕ(uu∗yy∗) =
ϕ((uy)(uy)∗) ≥ 0. Hence ϕ ≥ ψ ≥ 0. As ϕ is a pure state, we obtain ψ = ψ(e)ϕ.
Consequently, ϕ(xx∗y) = ψ(y) = ψ(e)ϕ(y) = ϕ(xx∗)ϕ(y).

The fact that (6) implies (c) follows from the evident identity x = 1
3

∑3
k=1 θ

kzkz
∗
k,where

θ = exp(2πi/3), zk = e− θ−k, k = 1, 2, 3, for all x ∈ U .

(c) ⇒ (b) Let ϕ be a homomorphism from U to Lω and ϕ ≥ ψ ≥ 0.
Then ϕω, ψω are positive C-linear functionals on L∞(Ω,X ) and ϕω ≥ ψω for
all ω ∈ Ω; in addition, ϕω is a homomorphism from L∞(Ω,X ) into C, where
ϕω, ψω are defined by correlation (5). By Bratteli and Robinson (1982) (P. 67)
we get that ϕω is a pure numerical state on L∞(Ω,X ). Hence ψω = ψω(e)ϕω
for all ω ∈ Ω, and therefore

ψ = ϕ(e)ϕ

For ε > 0 we put

W (ε) = {λ ∈ Lω : ρ(λ, 0) < ε}.

The system W = {W (ε) : ε > 0} generates in Lω a natural topology; in
addition, W is a base of zero neighborhoods in this topology.

Consider in U∗ a separable vector ∗-weak topology, whose base of zero
neighborhoods is represented by sets in the form

V 〈ε, δ, x1, ...xn〉 = {f ∈ U∗ : |f(xi)| ∈W (ε), i = 1, n},

where x1, ..., xn ∈ U, ε > 0.

By ∇ we define a Boolean algebra of all idempotents in Lω and let F ⊂
U∗. If (uα)α∈A ⊂ F , and (πα)α∈A is a unity partition in ∇ and the series∑
α∈A παuα *-weakly converges, then the sum of this series is called a confusion

of (uα)α∈A with respect to (πα)α∈A. This sum is denoted by mix(παuα). For
F the symbol mixF stands for the set of all confusions of arbitrary families of
elements of F . The set F is called cyclic, if mixF = F . For a directed set
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A the symbol ∇(A) stands for the set of all unity confusions in ∇ indexed by
elements of A. Define the ordering relation on ∇(A) as follows:

v1 ≤ v2 ⇔ ∀α, β ∈ A, (v1(α) ∧ v2(β) 6= 0→ α ≤ β)(v1, v2 ∈ ∇(A)).

Let (uα)α∈A be a net in F . For each v ∈ ∇(A) we put uv = mix(v(α)uα)
and obtain a new net (uv)v∈∇(A). An arbitrary subnet of the net (uv)v∈∇(A)

is called a cyclic subnet of the net (uα)α∈A. The set F ⊂ U∗ is said to be
*-weakly cyclically compact (Kusraev, 1985), if it is cyclic and each net in F
has a cyclic subnet, *-weakly converging to a certain point of F ((Kusraev,
1985), P. 50).

Proposition 3.3. Let U be a C∗-algebra over Lω. Then

(a) EU is *-weakly cyclically compact;

(b) if the algebra U is commutative, then the set K(U) of all pure states on
U is *-weakly cyclically compact.

Proof. (a) As EU ⊂ U∗1 and U∗1 is *-weakly cyclically compact, it suffices to
prove that EU is a cyclic and *-weakly closed subset in U∗1 . As the measure µ
is finite, we can consider only countable partitions in ∇.

Let (πn)n∈N be an arbitrary unity partition in ∇, (ϕn)n∈N ⊂ K(U) and ϕ =∑∞
n=1 πnϕn. Then ϕn(xx∗) ≥ 0 and ϕn(e) = 1 for all x ∈ U, n ∈ N. Therefore

ϕ(xx∗) =
∑∞
n=1 πnϕn(xx∗) ≥ 0 and ϕ(e) =

∑∞
n=1 πnϕn(e) =

∑∞
n=1 πn = 1.

Due to Proposition 3.1 we have ϕ ∈ EU .

If ϕ ∈ U∗1 belongs to an *-weak closure of EU , then one can find a net
{ϕα} in EU such that {ϕα(x)} converges in Lω by norm to ϕ(x) for all x ∈ U
. Consequently we obtain ϕ(xx∗) ≥ 0 and ϕ(e) = 1 for any x ∈ U . That is
means ϕ ∈ EU .

(b) It suffices to prove that K(U) is a cyclic *-weakly closed subset in EU .

Let (πn)n∈N be an arbitrary unity partition in ∇, (ϕn)n∈N ⊂ K(U) and
ϕ =

∑∞
n=1 πnϕn. Since the algebra U is commutative, by Proposition 3.2

ϕn is a homomorphism for each n ∈ N. Therefore for all x, y ∈ U we have

ϕ(xy) =

∞∑

n=1

πnϕn(xy) =

∞∑

n=1

πnϕn(x)ϕn(y) =

∞∑

n=1

πnϕn(x)

∞∑

n=1

πnϕn(y) = ϕ(x)ϕ(y)
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Which means ϕ is a homomorphism, and therefore ϕ ∈ K(U) (see Proposition
3.2).

Let now ϕ belong to an *-weak closure of K(U) and {ϕα} be a net in K(U)
such that {ϕα(x)} converges in Lω to ϕ(x) for all x ∈ U . By Proposition 3.2
we have ϕα(xy) = ϕα(x)ϕα(y) for all α and so ϕ(xy) = ϕ(x)ϕ(y), i.e., ϕ is a
homomorphism. Using Proposition 3.2 once again, we obtain ϕ ∈ K(U).

Proposition 3.4. Let U be a commutative C∗-algebra over Lω and a ∈ U .
Then on U there exists ϕ ∈ K(U) such that ϕ(a∗a) = ‖a‖2.

Proof. Let us assume that ‖a‖ ∈ L∞(Ω) (otherwise consider a
1+‖a‖ ).Let B =

{αe + βa∗a : α, β ∈ L∞(Ω)}. On B we define an L∞(Ω)-valued functional f
by the rule

f(αe+ βa∗a) = α+ β‖a‖2(α, β ∈ L∞(Ω)).

Let us check is f defined correctly.

Case 1. Elements {e, a∗a} are ∇-linearly independent. Therefore for any
π ∈ ∇ and λ1, λ2 ∈ Lω the formula π(λ1e + λ2a

∗a) = 0 yields πλ1 = πλ2 = 0
((Kusraev, 1985), P. 197). In this case the element αe+βa∗a is uniquely defined
in terms of α, β. Consequently f(αe + βa∗a) = α + β‖a‖2 is uniquely defined
in terms of α, β.

Case 2. Elements {e, a∗a} are ∇-linearly dependent. With no loss of gen-
erality, assume that a∗a = λe, λ ∈ L∞(Ω), λ ≥ 0. Then f(αe + βa∗a) =
α+ β‖a‖2 = α+ βλ, and in this case f is defined correctly.

Fix ω ∈ Ω and α, β ∈ L∞(Ω). Put αω = p(α)(ω), βω = p(β)(ω), eω =
lχ(e)(ω), aω = lχ(a)(ω). As a∗ωaω is a positive element of the C∗-algebra
U(ω),the number ‖a∗ωaω‖U(ω) belongs to the spectrum Sp(a∗ωaω) of the ele-
ment a∗ωaω.So we have the inequality

|αω + βω‖aω‖2U(ω)| ≤ sup{|αω + βωλω| : λω ∈ Sp(a∗ωaω)}.

By the formula for the spectral radius of the normal element αωeω+βωa
∗
ωaω ∈

U(ω) we get

sup{|αω + βωλω| : λω ∈ Sp(a∗ωaω)} = ‖αωeω + βωa
∗
ωaω‖U(ω)

.
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Consequently |αω + βω‖aω‖2U(ω)| ≤ ‖αωeω + βωa
∗
ωaω‖. Therefore and from

the equality a∗ω = lχ(a∗)(ω) we get that |α + β‖a‖2| ≤ ‖αe + βa∗a‖. Which
means that f is L∞(Ω)-bounded on B and ‖f‖ ≤ 1. But f(e) = 1, conse-
quently, ‖f‖ = 1 = f(e). Due to the Hahn-Banach-Kantorovich theorem f has
an extension g onto U , in addition, ‖g‖ = 1 = f(e) = g(e). This means that
g is a state on U (see Proposition 3.1) and g(a∗a) = f(a∗a) = ‖a‖2.

Let Ka(U) be a set of states ψ such that ψ(a∗a) = ‖a‖2. Clearly, Ka(U)
is a nonempty convex cyclic *-weakly closed subset of EU . So Ka(U) is an *-
weakly cyclic compact, and therefore due to the vector Krein-Milman theorem
((Kusraev, 1985), P. 58) the set Ka(U) has limiting points. Chose any limiting
point ϕ ∈ Ka(U) and assume that 2ϕ = ϕ1 +ϕ2, where ϕ1, ϕ2 ∈ EU . We have
ϕi(a

∗a) ≤ ‖a‖2, i = 1, 2, and 2‖a‖2 = ϕ1(a∗a) +ϕ2(a∗a). The latter is possible
only if ‖a‖2 = ϕ1(a∗a) = ϕ2(a∗a), i.e., ϕ1, ϕ2 ∈ Ka(U). As ϕ is a limiting
point of Ka(U), we have ϕ = ϕ1 = ϕ2. That means ϕ is a limiting point of
EU , and due to Proposition 3.2 ϕ is a pure state on U .

4. Representation of Commutative C*-Algebras
Over Arens Algebras

As in the previous section, we denote by K(U) the set of all pure states on
a unital C∗-algebra U over Lω.

Definition 4.1. We say that a mapping f : K(U)→ Lω is mixing-preserving,
if for an arbitrary unity partition (πn)n∈N in ∇ and (ϕn)n∈N ⊂ K(U),

f

( ∞∑

n=1

πnϕn

)
=

∞∑

n=1

πnf(ϕn)

For α, β ∈ Lω, ϕψ ∈ K(U) we put

dK(U)(ϕ,ψ) =
∧
{π⊥ : πϕ = πψ, π ∈ ∇}

and
d(α, β) =

∧
{π⊥ : πα = πβ, π ∈ ∇}.

Proposition 4.1. A mapping f : K(U)→ Lω preserves mixing if and only if
d(f(ϕ), f(ψ)) ≤ dK(U)(ϕ,ψ) for all ϕ,ψ ∈ K(U).

Proof. Necessity. Let π = dK(U)(ϕ,ψ)⊥. Then πϕ = πψ. For q ∈ K(U) we
have πϕ + π⊥q = πψ + π⊥q, and since f preserves confusions, we conclude
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that πf(ϕ) + π⊥f(q) = πf(ψ) + π⊥f(q). Hence πf(ϕ) = πf(ψ), and therefore
d(f(ϕ), f(ψ)) ≤ π⊥. Consequently,

d(f(ϕ), f(ψ)) ≤ dK(U)(ϕ,ψ).

Sufficiency. If ϕ =
∑∞
n=1 πnϕn, then πnϕ = πnϕn, n ∈ N, and therefore

πn ≤ d⊥K(U)(ϕ,ϕn) ≤ d⊥(f(ϕ), f(ϕn))

i.e., πnf(ϕ) = πnf(ϕn) for all n ∈ N . This means that

f

( ∞∑

n=1

πnϕn

)
=
∞∑

n=1

πnf(ϕn).

We say that mappings, satisfying the inequality in Proposition 4.1, do
not extend the ∇-metric (Abasov and Kusraev, 1987).

Consider onK(U) an *-weak topology induced from U∗. Let Cm(K(U), Lω)
stand for the set of all continuous, mixing-preserving mappings from K(U) into
Lω. For each f ∈ Cm(K(U), Lω) the set f(x) : x ∈ K is a cyclic compact in
Lω, and therefore it is order bounded in Lω. Consequently, an element ‖f‖ =
sup|f(x)| : x ∈ K(U) of Lω is defined. Consider in Cm(K(U), Lω) pointwise
algebraic operations and the involution.

Proposition 4.2. (Cm(K(U), Lω), ‖ · ‖) is a C∗-algebra over Lω.

Proof. In view of Proposition 4.1, Cm(K(U), Lω) coincides with the set of
all continuous mappings from K(U) into Lω which do not extend the ∇-metric.
According to Abasov and Kusraev (1987) (theorem 2), (Cm(K(U), Lω), ‖ · ‖) is
a Banach-Kantorovich space over Lω. The definition of the norm immediately
implies that ‖f · g‖ ≤ ‖f‖‖g‖ and ‖f · f‖ = ‖f‖2 for all f, g ∈ Cm(K(U), Lω).

The following result is a vector statement of the classical Gelfand–Naimark
theorem.

Theorem 4.1. Let U be a unital commutative C∗-algebra over Lω and let
K(U) be the set of all pure states on U. Then U is isometrically *-isomorphic
to Cm(K(U), Lω).

Proof is similar to that of the classical Gelfand–Naimark theorem.
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